Search results for "Pronormal subgroup"
showing 4 items of 4 documents
Pronormal subgroups of a direct product of groups
2009
[EN] We give criteria to characterize abnormal, pronormal and locally pronormal subgroups of a direct product of two finite groups A×B, under hypotheses of solvability for at least one of the factors, either A or B.
On generalized covering subgroups and a characterisation of ?pronormal?
1983
Introduction. The context of this note is the theory of Schunck classes and formations of finite soluble groups. In a 1972 manuscript Fischer [4] generalized the concept of an ~-covering subgroup of a group G to a (P, ~)-covering subgroup, where P is some pronormal subgroup of G, and proved universal existence (for P satisfying a stronger embedding property) in case the class ~ is a saturated formation. The fact tha t the Schunck classes are the classes ~ with the property that every group has an ~-projector [9, 4.3, 4.4; 6] (which coincides with an ~-covering subgroup in the soluble universe | [6, II.15]) raises the question whether it is possible to determine the whole range of universal …
A class of generalised finite T-groups
2011
Let F be a formation (of finite groups) containing all nilpotent groups such that any normal subgroup of any T-group in F and any subgroup of any soluble T-group in F belongs to F. A subgroup M of a finite group G is said to be F-normal in G if G/CoreG(M) belongs to F. Named after Kegel, a subgroup U of a finite group G is called a K- F-subnormal subgroup of G if either U=G or U=U0?U1???Un=G such that Ui?1 is either normal in Ui or Ui1 is F-normal in Ui, for i=1,2,...,n. We call a finite group G a TF-group if every K- F-subnormal subgroup of G is normal in G. When F is the class of all finite nilpotent groups, the TF-groups are precisely the T-groups. The aim of this paper is to analyse the…
On generalised FC-groups in which normality is a transitive relation
2016
We extend to soluble FC∗ -groups, the class of generalised FC-groups introduced in [F. de Giovanni, A. Russo, G. Vincenzi, Groups with restricted conjugacy classes , Serdica Math. J. 28(3) (2002), 241 254], the characterisation of finite soluble T-groups obtained recently in [G. Kaplan, On T-groups, supersolvable groups and maximal subgroups , Arch. Math. 96 (2011), 19 25].